If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1+2.7t-4.9t^2=0
a = -4.9; b = 2.7; c = +1;
Δ = b2-4ac
Δ = 2.72-4·(-4.9)·1
Δ = 26.89
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2.7)-\sqrt{26.89}}{2*-4.9}=\frac{-2.7-\sqrt{26.89}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2.7)+\sqrt{26.89}}{2*-4.9}=\frac{-2.7+\sqrt{26.89}}{-9.8} $
| 177=3p-6(3-6p) | | 4x-72=2/3 | | -56=8(y-6) | | 2-8v=26 | | 3(2x-2)+2(3x+4)=38 | | 3x+4+5x=44 | | 36,000+4,000x=51,000+1,500 | | P=10t-20,016 | | 55x=65(x-2) | | 2/3(p-12)=-2p-1)+7 | | 45=1/3(a)(5) | | 3=4x+13 | | 15r+38=3r | | 0=(-4.9t^2)+10t+25 | | 2(19-2m)=14 | | 4v+18=-4(7v+2)-6 | | y=-2^2−4 | | -40-2x=3(x-5) | | 4.9t^2+10t+25=0 | | -40-2x=3(x-5 | | 38-2x=6-4(7x+5) | | 10x-17/3+4=3x | | 1/3n=-7 | | 2(4x-12)=5(x+3) | | -8(1-4a)=8a-8 | | -2×5-5y=30 | | 2(x-3)+1/5=-4 | | 19(x+4)=57 | | 3x+91=125 | | 6m+5=61 | | 5v+14=124 | | 2+18n=-538 |